EBOV phylodynamics using regression-ABC CBGP seminar

Emma Saulnier Samuel Alizon and Olivier Gascuel 21/11/2017

CNRS, UM, MIVEGEC, LIRMM

Introduction

Mathematical epidemiology Phylogenies of viral infections Phylodynamics

Approximate Bayesian Computation (ABC)

Major human viral outbreaks during the past decade

Public health interventions

2014-2016 Ebola outbreak in west Africa

Basic reproduction number

- \mathcal{R}_0 : expected number of secondary infections caused by an infected individual during its entire infection, in a fully susceptible population of hosts
- + Early estimations for the 2014-2016 Ebola outbreak in Sierra Leone : $\mathcal{R}_0 = 2.02 \; [1.79 2.26]$

- + $\mathcal{R}_0 > 1$: the epidemic spreads
- + $\mathcal{R}_0 < 1$: the epidemic is under control

Mathematical epidemiology

Susceptible-Infected-Removed (SIR) epidemiological model:

$$S \xrightarrow{\beta} (I) \xrightarrow{\gamma} (R)$$

Ordinary differential equations (ODEs): $\frac{dS(t)}{dt} = -\beta I(t)S(t), \quad \frac{dI(t)}{dt} = \beta I(t)S(t) - \gamma I(t), \quad \frac{dR(t)}{dt} = \gamma I(t)$

Reproduction number:

$$\mathcal{R}(t) = \frac{\beta S(t)}{\gamma}$$
$$\mathcal{R}_0 = \mathcal{R}(t_0) = \frac{\beta N}{\gamma}, \ (S(t_0) = N)$$

SIR model trajectories

100 simulations with $\mathcal{R}_0 = 2$, N = 1000 et $d_l = 7$ days (expected duration of infection $d_l = \frac{1}{2}$).

Epidemiological or surveillance data

Incidence time series

2014-2016 Ebola outbreak in Sierra Leone.

- Actual incidence = $\beta S(t) I(t) dt$
- + Observed incidence \propto actual incidence \times sampling proportion

data from the WHO (2016)

Epidemiological or surveillance data

Questionnaires

- + Generation time ($\mathcal{T}_2 \mathcal{T}_1$)
- · Serial interval $(A_2 A_1)$
- Transmission networks

2014-2016 Ebola outbreak in Guinea

Faye et al. (2015)

Full transmission tree

Full phylogeny of infections

- Neutral evolution assumption
- Loss of transmission directionality

Phylogeny of sampled infections

• Loss of some transmission events (branchings)

Phylogeny of sampled infections

- Still contains information about the epidemiological dynamics provided:
 - $\cdot\,$ a sufficient number of sequences
 - a good sampling proportion

The rise of phylodynamics

Human influenza A virus

Grenfell et al. (2004)

Phylodynamic inference of the \mathcal{R}_{0}

Coalescent models

- Time
- Reconstruct the phylogeny going **backward in time**
- Strong assumption on the demographic history (eg: constant population size or exponential growth)
- Infer population size and growth rate
- $\cdot\,$ Relationship between population growth rate and \mathcal{R}_0

Phylodynamic inference of the \mathcal{R}_{0}

- Reconstruct the phylogeny and the demographic history **simultaneously**, going **forward in time**
- Assume a birth-death process with sampling
- Relationship between birth and death rates and the \mathcal{R}_0 for simple epidemiological models

Limits of the current approaches aiming to infer the \mathcal{R}_0

from epidemiological data:

Under-reported or memory-based data

from phylogenies of infections:

• Rely on simple demographic models that are different from the epidemiological models

more broadly:

- No integration of both types of data (genetic and epidemiological)
- Based on the computation of a likelihood function
 - limited by the model complexity
 - $\cdot\,$ limited by the dataset size

Approximate Bayesian Computation (ABC)

- Approach based on simulation from any kind of model
- Comparison between observed and simulated data using a distance frequently involving summary statistics
- Potentially **not limited** by the model complexity nor by the dataset size
- Would allow to infer more than just the \mathcal{R}_0

Sünnaker et al. (2013)

Simulations and summary statistics computation

Csilléry et al. (2010) Beaumont et al. (2002)

Regression-ABC

Rejection algorithm

Csilléry et al. (2010) Beaumont et al. (2002) Adjustment using regression

Csilléry et al. (2010) Beaumont et al. (2002)

- Develop an ABC approach for phylodynamics
- Validate this approach by comparison with current approaches
- Apply this approach to:
 - a large dataset (phylogeny + epidemiological data)
 - a complex epidemiological model

Inferring epidemiological parameters from phylogenies using regression-ABC

Simulating phylogenies of infections from epidemiological models

Comparing simulated phylogenies to the observed phylogeny Comparison study

Simulating phylogenies of infections from epidemiological models

The direct approach

- Simulation of the phylogeny of sampled infections and the epidemiological trajectory **simultaneously**, going **forward in time**
- Requires to model the sampling process (arepsilon)
- Implemented in MASTER [Vaughan et al. (2013)]

The two-step approach

- Simulation of the phylogeny of infections **after** the epidemiological trajectory, going **backward in time**
- Uses the sampling dates
- Implemented in Rcolgem [Volz (2012)]

Functional distance

 $d_f(\Phi_{obs}, \Phi_{sim})$

- Difficult to design
- ABC-MCMC [Marjoram et al. (2003)]
- Kernel distance [Poon *et al.* (2013)]
- Distance between two LTT plots [Saulnier *et al.* (2017)]

Summary statistics

 $d(s(\Phi_{obs}), s(\Phi_{sim}))$

- Easy to design
- Regression-ABC [Blum *et al.* (2010)]
- 83 statistics :
 - Branch lengths (26)
 - Topology (8)
 - LTT plot (9)
 - X-axis coordinates of the LTT plot (20)
 - Y-axis coordinates of the LTT plot (20)

SIR model with sampling:

Parameters:

- $\mathcal{R}_0 = \beta N / (\gamma + \varepsilon)$
- · $d_l = 1/(\gamma + \varepsilon)$
- $\cdot N = S + I + R$

Comparison study

Methods

- ABC-D [Saulnier *et al.* (2017)]: Rejection algorithm with distance between two LTT plots
- ABC: Rejection algorithm with the 83 summary statistics
- ABC-FFNN [Blum *et al.* (2010)]: Rejection algorithm with the 83 summary statistics + adjustment using FFNN regression (non-linear + variable selection)
- **ABC-LASSO** [Saulnier *et al.* (2017)]: Rejection algorithm with the 83 summary statistics + adjustment using LASSO regression (linear + optimized variable selection)
- **BDSIR** [Kühnert *et al.* (2014)]: Approach based on the likelihood of the BDSIR model and using MCMC (BEAST)
- Kernel-ABC [Poon (2015)]: ABC-MCMC method using the kernel distance (simulations using Rcolgem)

Epidemiological information captured by the summary statistics

- X-axis coordinates of the LTT plot
- Y-axis coordinates of the LTT plot Saulnier et al. (2017)

Similar accuracies for ABC-LASSO and BDSIR methods on large phylogenies

Saulnier et al. (2017)

The BDSIR method hardly converges towards a posterior distribution for N

Saulnier et al. (2017)

- 83 summary statistics contains information about the epidemiological parameters
 - LTT plot > branch lengths » topology
- Similar accuracies for ABC-LASSO and BDSIR methods on large phylogenies
- Adjustment using regression reduces the inference error
- ABC-LASSO is more robust than ABC-FFNN
- Bad convergence for *N* using BDSIR

Inferring epidemiological parameters using regression-ABC and combining phylogeny and incidence data

2014-2016 Ebola outbreak in Sierra Leone

SEIDR model

ABC-regression inferences using the phylogeny and/or the incidence data

Sensitivity of our phylodynamic approach to phylogenetic uncertainty

Phylogeny of the 2014-2016 Ebola outbreak in Sierra Leone

Dudas et al. (2017)

Incidence data

2014-2016 Ebola outbreak in Sierra Leone

data from the WHO (2016)

New summary statistics

computed on incidence data:

- Date of the maximal incidence value
- Slope of the exponential growth phase
- Slope of the exponential decrease phase
- Slope ratio
- Auto-correlation coefficients

computed on phylogenies:

• Statistics of the Laplacian spectrum

Lewitus et al. (2015)

SEIDR model

Fixed parameters (according to [WHO Ebola Response Team (2015)]):

- Expected duration of the latency phase: $1/\sigma = 11.8$ days
- Expected duration of the symptomatic phase: $1/\gamma = 6.2$ days
- Lethality rate: p = 0.765

Variable parameters:

- + Global basic reproduction number: $\mathcal{R}_0 = \mathcal{R}_{0,l} + \mathcal{R}_{0,D}$
- Fraction of the \mathcal{R}_0 associated to dead bodies: $f = \mathcal{R}_{0,D}/\mathcal{R}_0$
- Expected duration of post-mortem transmissibility: $1/\mu$
- Total population size: N
- Date of origin of the epidemic: t_0

Simulation of large phylogenies of infections from the SEIDR model

Modifications of the prior distributions after simulations

More accurate estimations using ABC-regression with both types of data

Important sensitivity to phylogenetic uncertainty due to the low substitution rate

Procedure:

- 1. Sequence simulation for simulated phylogenies of infections
- 2. Phylogenetic inference using the simulated sequences
- 3. Time-scaling of the phylogenetic trees
- 4. Inference using regression-ABC

Ebola virus substitution rate: 0.0012 subst.site⁻¹.year⁻¹

Important sensitivity to phylogenetic uncertainty due to the low substitution rate

Procedure:

- 1. Sequence simulation for simulated phylogenies of infections
- 2. Phylogenetic inference using the simulated sequences
- 3. Time-scaling of the phylogenetic trees
- 4. Inference using regression-ABC

Ebola virus substitution rate $\times 10$

Incidence:

$$\mathcal{R}_0 = 1.44 \ [1.39 - 1.58]$$

Phylogeny + incidence:

$$\mathcal{R}_0 = 1.65 \ [1.58 - 1.81]$$

Phylogeny:

$$\mathcal{R}_0 = 1.68 [1.60 - 1.80]$$

Conclusions on this second section

- The new simulation approach induces a modification of the prior distributions
- The parameter inference is improved by the use of both types of data
- Regression-ABC inferences are impacted by the phylogenetic uncertainty
- This is especially the case for f and μ
- A higher substitution rate improves the phylogenetic inference and therefore the parameter inference using regression-ABC
- We re-estimated the \mathcal{R}_0 of the 2014-2016 Ebola outbreak in Sierra Leone using the phylogeny and incidence data

Conclusions and perspectives

- We developped a regression-ABC approach for phylodynamics
- We validated it by comparing it to several existing approaches
- We applied it to the dataset of the 2014-2016 Ebola outbreak in Sierra Leone

- Ability to rapidly simulate a large dataset
- Identifiability of the parameters from the data and through the summary statistics
- Rejection algorithm based on the Euclidian distance computed on large vectors of unweighted statistics
- Non-linear regression method with optimized variable selection
- Sensitivity to phylogenetic uncertainty
- No model comparison

short term

- Test other regression models
 - random forests, deep learning
- Applications to other datasets (flu virus, HIV)
 - \cdot more data
 - more complex models (seasonality, spacial spread, host and contact heterogeneity)
 - new statistics on labellized trees

long term

- Develop a model comparison approach
- Use sequences instead of phylogenies
 - simulate sequence evolution during an epidemic
 - develop new summary statistics on sequences
 - results in removing the problem of phylogenetic uncertainty
 - \cdot enable to test other assumptions about the sequence evolution

Fundings PEPS (CNRS, UM), Sidaction

MIVEGEC

- Samuel Alizon
- Members of the ETE team

LIRMM

- Olivier Gascuel
- \cdot Members of the MAB team

Thank you for your attention

Questions?

Erreur d'inférence de plusieurs méthodes ABC en fonction de la tolérance

ABC-D
ABC
ABC
ABC-FFNN
ABC-LASSO

Inférences à partir de la phylogénie du début de l'épidémie d' Ebola en Sierra Léone en 2014

Phylogénie du début de l'épidémie d'Ebola en Sierra Léone en 2014

Nouvelles statistiques de résumé

Inc > LTT > LS > BL > Topo

Algorithme itératif de filtres à particules

